[Home]

Бездроссельные пускорегулирующие устройства люминесцентных ламп

В документе "Люминесцентные лампы с электронным балластом" рассматривается устройство люминесцентных ламп, особенности их использования, устройство и работа классических пускорегулирующих устройств и пришедших им на смену более современных и совершенных электронных балластов.

Существует ещё один интересный вариант пускорегулирующего устройства. А интересен он тем, что: во-первых, не содержит дросселя в своей схеме, а во-вторых, способен зажечь даже лампу с перегоревшими катодами. С другой стороны, в процессе работы такого устройства нарушаются требования к режиму старта и установившемуся режиму лампы. Поэтому поначалу я не хотел упоминать об этих устройствах, которые были довольно популярными ещё в советские времена, когда утилизировать перегоревшую лампу казалось непозволительной роскошью, но сейчас уже потеряли свою актуальность. Однако, как оказалось, бездроссельные схемы не забыты и сейчас. Помнят о них китайские разработчики дешёвых (китайских) устройств, для которых главное условие - сделать свой продукт экстремально дешёвым, а работоспособность устройства не более чем желательна. О надёжности или высоких технических характеристиках речи в таких случаях нет.

Оглавление
Устройство и принцип действия
Модифицированный вариант
Практическое применение

Ссылки на внешние документы
Люминесцентные лампы с электронным балластом
Умножитель напряжения



Устройство и принцип действия

Рассмотрим сначала схему "советского варианта" бездроссельного пускорегулирующего устройства. На рис. 1 изображена схема с указанием номиналов элементов для подключения лампы мощностью 30 Вт. Далее приведена таблица с номиналами для случаев, когда используются лампы другой мощности.

Бездроссельное пускорегулирующее устройство Рис. 1

WL, Вт C1, C4, мкФ C2, C3, пФ D1-D4 R1, Ом
30 4 3300 Д226Б 60
40 10 6800 Д226Б 60
80 20 6800 Д205 30
100 20 6800 Д231 30

Данная схема является обычной схемой умножителя напряжения на 4. В режиме холостого хода (при отсутствии разряда в лампе) напряжение на выходе умножителя достигает величины около 1.2 кВ. Если этого напряжения оказывается достаточно для зажигания разряда, то лампа загорается, а напряжение на ней падает. Умножитель в схеме является неоднородным (ёмкость конденсаторов C2, C3 во много раз меньше ёмкости конденсаторов C1, C4), за счёт этого после зажигания лампы их влияние на работу схемы оказывается незначительным, можно считать, что они исключаются из схемы и происходит переход в режим работы с умножением напряжения на 2.
Подробнее об умножителях смотрите в документе "Умножитель напряжения".

В рабочем режиме разряд в лампе ограничивает напряжение на ней величиной порядка 100 В, это означает, что умножитель фактически работает как выпрямитель с балластным конденсатором. Подробно работа подобных схем в данном режиме рассматривается в документе "Выпрямитель-удвоитель напряжения с емкостным балластом". Резистор R1 ограничивает ток через лампу в момент зажигания разряда (газовый разряд в лампе имеет падающий участок характеристики, на котором напряжение на лампе уменьшается с ростом тока через неё и при отсутствии ограничивающего резистора, ток разряда конденсаторов может оказаться достаточно большим для разрушения лампы). Кстати, несмотря на питание лампы выпрямленным током, в результате того, что удвоитель работает в режиме с большим током нагрузки, не обеспечивается непрерывное горение лампы в течение периода, лампа гаснет и зажигается дважды за период.

Схема не отвечает ни одному из требований, предъявляемым к пускорегулирующим устройствам люминесцентных ламп: не обеспечивает предварительного прогрева катодов, не обеспечивает синусоидальности и отсутствию импульсных выбросов питающего тока, имеет большую постоянную составляющую питающего тока (питание лампы осуществляется выпрямленным пульсирующим током). Характеристики лампы в таких условиях работы будут быстро ухудшаться, общий срок её службы окажется крайне малым. Возможность включения перегоревших ламп не стоит рассматривать серьёзно - номинальный режим газового разряда в лампе обеспечить всё равно не удастся, а значит ни по эффективности, ни по световой отдаче не будет получено ничего сопоставимого с исправной лампой, подключённой к качественному пускорегулирующему устройству. Это уже не говоря о том, что в течение срока службы параметры лампы постепенно ухудшаются и часто лампа требует замены задолго до полного выхода из строя, просто из-за потери эффективности.

Схема на рис. 1 весьма простая, но она не даёт выигрыша по объёму или массе по сравнению со схемой электронного балласта, так как приходится использовать два конденсатора достаточно большой ёмкости, рассчитанных на работу при сетевом напряжении. Кроме того, на резисторе R1 рассеивается значительная мощность (порядка 5 Вт при работе на лампу мощностью 30 Вт). Значит, потребуется мощный резистор, который сам имеет достаточно большие размеры и требует наличия свободного пространства вокруг для нормального отвода тепла. Это уже не говоря о снижении КПД, ради высокого значения которого и переходят на люминесцентные лампы.

И наконец, начального напряжения схемы 1.2 кВ хватает для запуска (с холодными катодами) только очень коротких ламп с длиной трубки не более пары десятков сантиметров. Для запуска с холодными катодами более длинных ламп требуется напряжение в несколько киловольт, а значит, понадобится умножение напряжения не в 4 раза, а в 10 и более раз.

Модифицированный вариант

Рассмотренная в предыдущем пункте схема является избыточной. В нашем случае не требуется непрерывная работа устройства в режиме умножителя напряжения, требуется лишь получить импульс высокого напряжения для запуска лампы. Но четырёхкратный импульс напряжения относительно амплитуды можно получить при меньшем количестве элементов, например, если использовать схему умножителя на 3, включённую с "перекосом". Эту схему можно получить из схемы на рис. 1 исключением элементов D4, C3 или D1, C2, как изображено на рис. 2.

Бездроссельное пускорегулирующее устройство (оптимизированный вариант) Рис. 2

Нумерация элементов сохранена та же, что на рис. 1, такими же остаются типы и номиналы используемых элементов.

Схема является схемой умножителя напряжения на 3, несимметричного и включённого с перекосом, напряжение на выходе в режиме холостого хода (пока разряд в лампе отсутствует) равно сумме напряжений на конденсаторах C3, C1 и сети. Напряжение на C3 равно удвоенному амплитудному напряжению сети, напряжение на C1 равно амплитудному напряжению сети. Если амплитуду напряжения в сети обозначим Ua, мгновенное значение напряжения в сети u(t), то напряжение на лампе
U=U3+U1+u(t)=2*Ua+Ua+u(t),
U=3*Ua+u(t),
причём u(t) изменяется в пределах от -Ua до +Ua, следовательно, U изменяется от 2*Ua до 4*Ua, т.е. достигает пикового значения, в четыре раза превышающего амплитуду сетевого напряжения, как и в схеме на рис. 1. Таким образом, если лампа зажигается в схеме на рис. 1, то она будет зажигаться и в данной, более простой схеме.

После зажигания разряда и появления тока через лампу, диод D4 и конденсатор C3 малой ёмкости не оказывают существенного влияния на работу схемы, и она становится полностью эквивалентной схеме на рис. 1.

Практическое применение

Подобная схема обнаружилась в так называемом "детекторе валют", Currency detector PRO 4. Под этим громким названием скрывается, в данном случае, обычный компактный ультрафиолетовый светильник на основе люминесцентной лампы, предназначенный для визуального контроля наличия на банкноте светящихся в ультрафиолете элементов.

Что удивительно, при разработке устройства была допущена ошибка в схеме.

Принципиальная схема детектора валют Currency detector PRO 4 Рис. 3

В схеме на рис. 3 диод D2 и конденсатор C3 не выполняют никакой функции и могут быть заменены перемычкой. В то же время, устройство работоспособно, так как его схема эквивалентна описанному в предыдущем пункте варианту (рис. 2), просто имеет лишние детали. Для сравнения на рис. 4 приведена схема, которую разработчики* устройства на самом деле имели в виду.

* Если можно так назвать людей, которые не могут без ошибок срисовать чужую схему на четырёх диодах. Нормальный разработчик поставил бы электронный балласт, а если уж экономил бы, то не ставил бы лишний диод с конденсатором только для красоты.

Исправленный вариант принципиальной схемы детектора валют Currency detector PRO 4 Рис. 4

author: hamper; date: 2016-12-21; modified: 2017-01-30
  @Mail.ru